
A COMPREHENSIVE STUDY OF EXECUTION TIME FOR

ROW AND COLUMN ORIENTED DATABASE
Mr. H.K. Mishra

1
, Mr.Yashwant Soni

2
, Ms. Sakshi Gautam

3

1
HOD in EE Deptt. Sobhasaria group of institutions, Sikar,hare.dbit@gmail.com

2
Asst. Prof. in CSE Deptt. Sobhasaria group of institutions, Sikar,yashalw80@gmail.com

3
Asst. Prof. in CSE Deptt. JBIT, Dehradun , 1sakshigautam@gmail.com.

Abstract--The size of data in various types of databases are increasing rapidly. At the same time, the performances of query against these same databases

are degrading. There are two methods to implement a two-dimension relational database table onto a one-dimensional storage interface: store the table

row-by-row, or store the table column-by-column. Traditionally, database system implementations and research have focused on the row-by row data

layout, since it performs best on the most common application for database systems: business transactional data processing. However, there are a set of

emerging applications for database systems for which the row-by-row layout performs poorly. The need for Column-oriented database arose from the

need of business intelligence needed for efficient decision making where traditional Row-oriented database gives poor performance. We know that

Business organizations have to handle large amount of data in database and extract meaningful information from that database for efficient decision

making which is commonly termed as Business Intelligence. Extracting meaningful information from raw data is term as data mining. In this paper, we

study the poor performance of row-by-row data layout for these emerging applications, and evaluate the column-by-column data layout opportunity as a

solution to this problem. The solution will be analyzed and represented by graph. At the end of the paper we will see the performance of Oracle 10g.

 Keywords--Databases, Database Systems, Row Store, Column Store, Performance Tuning

1. INTRODUCTION

Whenever we say relational data, most obvious interpretation is a

table which has attribute as one dimension and entity as another.

We imagine a table stored on some storage media in such a 2-

dimensional form. But this is just a concept for better

understanding of any relation stored some storage media. At

physical level, it is not possible to store data like the way we

imagine. Therefore, Data are physically stored consecutively one

after another in 1-dimensional way. While storing in 1-

dimensional manner we have 2 choices. We can either store the

data entity-by-entity or attribute-by-attribute. This leads to two

kinds of databases Row-Store and Column-Store respectively.

1.1 Rows v/s Columns

The question of which type of database system is better depends

on the kind of query workloads . If after data insertion, updation,

deletions are going to be more and if accessing entire tuples is a

need then Row-Stores are the best. They are the most common

ones for business transactional data processing. For example, a

bank uses databases to store information of its customers. Some

customer A might want to transfer money to the account of

customer B. Here, Customer A and B are entities. Here a simple

updation has to be done in accounts of A and B both which is

deduct amount x from account of A and credit amount x to

account of B. As it can be seen information will be required by

the bank from DBMS on the granularity of an entity here, Row-

Store which stores data entity-by-entity will be most obvious

choice out of the two database systems we studied. If we consider

another query, customers shopping for more than Rs. 5000 every

month,(Owner thinks if additional benefits are given to these

customers then they might visit the shop more often). This query

needs only customer name, amount spent and date attributes from

the entire relation. Clearly, rest 10-15 attributes will be irrelevant

(assuming dataset is very large). This query will help to gain

insight into the data and it is not business critical situation like in

transactional processing. For such kind of queries Column-Stores

perform better since attributes are stored separately so irrelevant

attributes need not be accessed saving a lot of processing time.

Suppose if queries are going to be Read queries which will help

to gain insight into the data, Column-Stores will certainly perform

better. Therefore, when it comes to analytical applications or

decision making applications, column-stores prove to be the best

[3]. Business organizations have to handle large amount of data

and extract meaningful information from that data for efficient
decision making which is commonly termed as Business
Intelligence.
Again there are some optimizations possible with Column-Stores

and are not possible with Row-Stores which can improve

performance of Column-Stores compared Row-Stores

significantly [2, 3]. The rest and the most important is

Compression [8]. As data are stored column-by-column,

compression can be easily applied on a column. This is possible

because a column has a data type in which similar data is stored.

Like mobile number in India will always contain 10 digits. If one

could store data is compressed format, performing column

extraction will become very easy. Next is block processing, where

multiple tuples from a column are extracted and are passed as a

block from one operator to another. There is one more

optimization called as Late Materialization where tuples

construction i.e. joining of columns is performed as late as

possible. These optimizations are specific to Column-Stores

because Row-Stores do not have required properties to apply

these optimizations.

2. BACKGROUND AND RELATED WORK

A relational database management system provides represents

data into a two-dimensional table, which consist of columns and

rows. Row-based systems are not efficient at performing

operations that apply to the entire data set, as opposed to a

specific record.[2,3,4]

In our work, we see that previously there are various approaches

are implemented for Column-Store database and I found that

Vertical Partitioning is most preferred of all due to less

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

259

IJSER © 2017
http://www.ijser.org

IJSER

complexity and no limitations on the kind of possible read

queries.

In this section we are showing that what are the disadvantages of

row oriented database and how we can improve the performance

of sql query with column oriented database techniques.

2.1Merit of column store

• Improved bandwidth utilization: In a column-store only

those attribute that is accessed by a query needs to be read-

off disk (or from memory into cache). In a row store

surrounding attributes also need to read since the attribute is

generally smaller than the smallest granularity in which data

can be accessed.

• Improved data compression: Storing data from the same

attribute domain increases locality and thus data compression

ratio (especially if the attribute is sorted). Bandwidth

requirements are further reduced when transferring

compressed data [1,8]

• Improved code pipelining: Attribute data can be iterated

through directly without indirection through a tuple interface.

This results in high IPC (instructions per cycle) efficiency,

and code that can take advantage of the super-scalar

properties of modern CPUs [4, 5].

• Improved cache locality: A cache line also tends to be larger

than a tuple attribute, so cache lines may contain irrelevant

surrounding attributes in a row-store. This wastes space in

the cache and reduces hit rates [6].

2.2 Demerit of column-stores:

• Increased disk seek time: Disk seeks between each

block read might be needed as multiple columns are

read in parallel. However, if large disk pre-fetches are

used, this cost can be kept small[8]

• Increased cost of inserts: Column-stores perform poorly

for insert queries since multiple distinct locations on

disk have to be updated for each inserted tuple (one for

each attribute). This cost can be alleviated if inserts are

done in bulk.

• Increased tuple reconstruction costs: In order for

column-stores to offer a standards-compliant relational

database interface (e.g., ODBC, JDBC, etc.), they must

at some point in a query plan stitch values from multiple

columns together into a row-store style tuple to be

output from the database. Although this can be done in

memory, the CPU cost of this operation can be

significant. In many cases, reconstruction costs can be

kept to a minimum by delaying construction to the end

of the query plan [9].

3. IMPLEMENTATION

Our goal is to design column oriented databases and to propose

new ideas for performance optimization. One approach of

implementing column oriented database is to vertically partition a

traditional row oriented database. Tables in the row store are

broken up into multiple two column tables consisting of (table

key, attribute) pairs. There is one two column tables for each

attribute in the original table. When a query is issued, only those

thin attribute-tables relevant for a particular query need to be

accessed-the other tables can be ignored. These tables are joined

on table key to create projection of original table containing only

those columns necessary to answer a query, and then execution

proceeds as normal. The smaller the percentage the columns from

table that need to be accessed to answer a query the better the

relative performance with a row store will be.

In a fully vertically partitioned approach, some mechanism is

needed to connect fields from the same row to together (column

stores typically matchup records implicitly by storing columns in

the same order, but such optimization are not available in a row

store). To accomplish this, the simplest approach is to add an

integer “position” column to every table- this is often preferable

to use the primary key because primary keys can be large and are

sometimes composite. This approach creates one physical table

for each column in the logical schema. By the example given

below the conversion of a row by row database to column

oriented database can be shown.

For performance analysis of row oriented database vs column

oriented database there is a need of large row-oriented database.

Using this large row-oriented database column-oriented database

can be derived by vertical partitioning. Analysis of performance

will be based on execution time of sql queries on the row oriented

database and column oriented respectively. In this paper Oracle

10g is taken as database software.

There are two table in the database name

Account_Table(Branch_Name,Account_Number, Balance)) and

Depositor_Table (Cust_Name,Account_Number). Initially both

tables contains million records each. By Vertical partitioning on

the given tables we derived new tables and a separate database

has been made. The tables are

Account_X (SNO,Branch_Name),

Account_Y(SNO,Account_Number), Account_Z(SNO,Balance),

Depo_1(SNO Cust_Name) and Depo_2 (SNO,Account_Number),

respectively.

Now we have take the internal join of any two or three table

according to requirement queries will execute on this database

and the performance will analyzed on the basis of query

execution time(in sec).

3.1 Analysis of Performance

Performance will be analyzed on software Oracle 10g .

Let us see what difference does this approach make in the query

plan of a

SELECT query which is as follows:

For row store
• select count (distinct cust_ name) from Depositor,

Account where Depositor . account _number = Account

. account _number and Branch_ name = 'brighton'

group by branch_name;

For column store
• select count (distinct cust_name) from depo_1,

Account_X where depo_1.srno = Account_X.srno and

Branch_name='brighton'

group by Branch_name;

• In this SELECT query, Depo_1.srno , Account _X.srno

and Branch_Name are predicates. Predicate is a

attribute present in a query on which some condition is

applied. Also, Cust_name is non-predicates. Non-

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

260

IJSER © 2017
http://www.ijser.org

IJSER

predicate is an attribute present in the query which is to

be projected. Hence, these attributes are considered

while taking natural join for corresponding tables. Here,

two natural joins of internal tables will be taken. One

will be for Depositor table (Cust_Name and

Account_Number) and another for Account table 1

(Account_Number and Branch_Name).

• Now let us see the performance comparison of Row-

Store against Column- Store with the help of some sql

queries with following result.
 Table1: Experimental results for simple select query

Sequence of

query

execution

Execution Time in

seconds For Row-

Store

Execution Time

in seconds For

Column-Store

1 0.45 0.16

2 0.03 0.02

3 0.11 0.02

4 0.02 0.01

5 0.08 0.06

6 0.08 0.02

7 0.02 0.01

8 0.03 0.02

9 0.02 0.01

10 0.05 0.03

0

0.1

0.2

0.3

0.4

0.5

1 3 5 7 9

E
x
e
c
u

ti
o
n

 T
im

e
 i

n
 S

e
c
o
n

d
s

Sequence of query execution

comparitive performance of

select query in column store v/s

Row store

ROW

ORIENTED

COLUMN

ORIENTED

Figure1: Query Performance on Oracle10g database

By Fig it is clear that Column Oriented database performs

better than Row-Oriented database at certain conditions on

Oracle 10g.

5. CONCLUSION

In our work, we investigated various approaches of

implementation of Column-Store .The results show that

performance of our Column-Store implementation is very

high as compared to Row-Store in queries. Using Column-

Stores only attributes which are present the select query as a

predicate or non-predicate, are accessed which reduces

execution time as compared to that in Row-Stores [8]. This

concept is implemented for Column-Store implementation in

oracle10g. We see that as number of columns accessed

increases, the performance of Column-Store degrades which

is as expected. This is because number of joins of internal

tables increases in such a case which leads to increase in

execution time. The same case would be very efficient in

Row-Store. But, the idea behind Column-Stores is to use

them for specific applications such as data mining, data are

housing and scientific datasets. Vertical partitioning

approach to build a column-store requires slight

modifications in the DBMS. This modification in the DBMS

will certainly result is significant performance gains for large

databases. It will certainly be useful for data warehouses

where the analysis is naturally a read oriented endeavor.

Unlike row oriented databases write optimized nature

column oriented databases will be read optimized. Vertical

partitioning is a good approach for column oriented database

design but this approach also introduces extra redundancy in

the database. So instead of using primary key or serial no

indexing can be used. In future I want to implement data
directly into column manner in which write query can give

better performance.

6. REFERENCES

[1] Raichand priyanka and aggarwal rinkle rani department of cse,

thapar university, patiala short survey of data compression

techniques for column oriented databases volume 4, no. 7, july

2013 journal of global research in computer science.

 [2]Dwivedi Amit Kumar ,Lamba C. S. ,Shukla Shweta , Performance

Analysis of Column Oriented Database Vs Row Oriented

Database, IJCA Journal Volume 50 Number 14 ,2012,

 [3] Daniel J. Abadi, Samuel R. Madden, Nabil Hachem, “Column-

Stores vs Row-Stores : How Different Are They Really?”,

Vancouver, BC, Canada, SIGMOD’08, (2009-12)

 [4] Stavros Harizopoulos (HP Labs), Daniel Abadi (Yale), Peter Boncz

(CWI), “Column-Oriented Database Systems”, VLDB Tutorial,

(2009).

 [5]D. J. Abadi, “Query execution in column-oriented database systems”,

MIT PHD Dissertation(2008).

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

261

IJSER © 2017
http://www.ijser.org

IJSER

[6] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden,

“Materialization strategies in a column-oriented DBMS”, In ICDE,

pp 466-475, (2007).

[7] G. Graefe, “Efficient columnar storage in b-trees”. SIGMOD Rec.,

36(1):pp 3–6 ,2007

[8]D.J.Abadi,S. R. Madden, and M. Ferreira,“Integrating compression

and execution in column oriented database systems”, In

SIGMOD, pp 671-682, 2006

 [9] S.Harizopoulos, V. Liang, D. J. Abadi, and S.R. Madden.

“Performance tradeoffs in readoptimized databases”, VLDB, pp

487–498, 2006

[10] Halverson, J. L. Beckmann, J. F. Naughton, and D. J. Dewitt, “A

Comparison of C-Store and Row-Store in a Common Framework.”

Technical Report TR1570, University of WisconsinMadison,2006

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017
ISSN 2229-5518

262

IJSER © 2017
http://www.ijser.org

IJSER

